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Outline

• Motivation / Background / Objectives

• Small Fatigue Crack Growth Data
– From micro-notches
– From smooth surfaces (“cluster cracks”)

• Statistical Aspects
– Confidence Intervals 
– Scatter 
– Extrapolation
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Background

• Small cracks: Of the order of 1-10 grains

• Considerable part of total fatigue life is 
spent in the “small crack growth” regime

• Need of an acceptable method to include 
in fatigue life codes

• Appropriate statistical representation
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Background, Cont.

• The role of the local microstructure 
in the initial stages of fatigue crack 
growth has been discussed  by
– Miller (1982)
– Chan and Lankford (1984)
– Leis et al (1986)
– Navarro and De Los Rios (1988)
– Tanaka and Akiniwa (1989)
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Background, Cont.

• Features of small crack growth

– Growth-arrest

– Coalescence of microcracks

– Growth at smaller SIFs and at faster rates than 
equivalent long cracks

– Scatter significantly greater than that for long 
cracks
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Background, Cont.

• Smooth Surfaces: micro-multi-site cracking
– Crack initiation consists of localized clusters 

of micro-cracks
– Lab tests on polished specimens

• Flaws, Micro-Notches, Nicks
– Cracks can also emanate from flaws such as 

nicks
– H-53 helicopter failure report (Crawford, 1990): 

fastener holes, internal corners with small radii 
and sections with abrupt changes in thickness
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Background, Cont.

• Kardomateas, Carlson, Soediono(1993)
– Study on applicability of K- singularity for 

small a/ρ

• Carlson and Halliday (1998)
– Tests on smooth bar 2024-T351 (thumbnail 

cracks) and with a corner crack

• Newman (1992)
– Effective stress intensity factor range, closure 

effects
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Background, Cont.

• Cox and Morris (1988)
– random, 2D pattern of grains and Monte Carlo 

simulation of small cracks growing under 
Mode I

• Steadman, Carlson and Kardomateas (1998)
– “Graftals” (used to describe growth in 

biological systems) combined with “trapping” 
and “untrapping” conditions
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Background, Cont.

• Schijve (1994): differences between 
lab and service

• Stolarz and Kurzydlowski (1998): 
Smooth bars of Zircaloy-4.  Densities
of cracks of the order of the grain 
size much larger up to 50% of fatigue 
life; beyond that long dominant crack
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Background, Cont.

• Limitations of simulation studies
– Local, effective SIFs based on linear, isotropic 

elasticity do not account for varying 
crystallographic orientations

– 2D analyses do not account for 3D effects

– Variation of grain shapes depending on 
processing, e.g. elongated, pancake, etc

– Complexity of forms of localized damage and 
branching (Carlson, Steadman and Kardomateas, 
2001 on Small Fatigue Crack Morphology)
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Morphology of 
Small Crack Growth

Deviation from planar, crack branching, etc.
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Background, Cont.

• When cracks are of the order of the grain 
size, the medium through which a crack 
front moves is neither homogeneous nor 
isotropic

• Details of crack path advance dependent 
on microstructure
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Polished and Etched 
Outer Surface

br – branching
gb – grain boundary deflection

dm – local damage
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Polished Surface 250 microns 
Below Outer Surface
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Polished Surface 750 microns 
Below Outer Surface
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Topics

• Scatter in small fatigue crack growth from micro-
notches

• Scatter in small fatigue crack growth from 
smooth surfaces (“cluster cracks”).
– Micro, multi-site cracking.
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Micro-Notches
Completed Research

• Test Setup
– Alloy: 6061-T651 (rod form)
– Grain size: Transverse -200 microns

Longitudinal - 350 microns
– Properties: 0.2% offset yield stress – 283 MPA

ultimate strength – 293 MPA
– Test specimen: Square cross-section

150 micron notch corner edge
– Loading condition: Bending about a cross section                    

diagonal 
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Micro-Notches, Cont.

• Corner crack in 3-pt bending

– Midpoint corner cracks were initiated at a notch with a depth 
of 150 µm

– sinusoidal loading at 10 Hz with a load ratio of 0.2 
– Maximum nominal stress: 0.8 of the yield stress
– Crack monitoring with telemicroscope: sensitivity of readout: 

10 µm
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Test Data/Details

– 150 µm notch

– Readings every 
10,000 cycles

– 65,000 cycles 
“fatigue 
precracking” (to 
go beyond notch 
effects)

Micro-Notches, Cont.
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Growth Rates

– Beyond 1,000 µm, 
rates begin to 
converge

– At this length, 
crack front is 
intersecting 
about 10 grains

– Beyond 1,500 µm, 
“long” crack 
growth

Micro-Notches, Cont.
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Test Data from Micro-
Notches

Micro-Notch Test Data
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Regression Analysis

• da/dN computed by differentiating resulting 
equations
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da/dN vs a with 
95% bounds
•Student’s t 
analysis of growth 
rates for 95% 
confidence 
intervals

• Cartesian

• Rates eventually 
merge

Micro-Notches, Cont.
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•Why log-log is not 
appropriate

•Possibility of 
extrapolation to 
zero a and da/dN
with Cartesian 

Micro-Notches, Cont.
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Interpolation

• Extensions 
of 95% 
curves back 
to initiation 
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Interpolation, Cont.

• our function

• Crack must start growing from a finite initial 
value (because a → 0 only as N → -∞)
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• a = 200 µm for 
N = 0 (grain 
size)

• At 1,000 µm 
values of N are 
250,000 and 
1,000,000

For design may 
add lower 
bound cycles –
add to the 
cycles between 
1,000 µm and 
critical long 
crack

Interpolation, Cont.
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Analysis of
Standard Deviation

• Standard Deviations of Crack Growth Rates 
presented were calculated as follows:

m = number of test specimens
Ri = growth rate = (da/dN)I
Rmean = mean growth rate
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Trends in Standard 
Deviation

• Behavior of S.D. can be represented by exponential 
function of the form:

• a = crack length, C,D = Constants
• Nonlinear regression analysis provides the following:

( )aDCeS Φ=

( )[ ]26 80010299.281.0 −⋅− −

= aeS
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Grain Intersection 
Analysis

• Corner Crack fronts assumed to grow with 
quarter circular crack fronts.

• n = number of grains intersected by crack front
a = Crack depth
d = Mean grain diameter
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S.D. and Grain Intersection 
Relations
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• Grain Intersections and Standard Deviation Vs. 
Crack Length



Daniel Guggenheim School of Engineering

Grain Intersection
Relations

• Number of grains intersected by crack front is 
a linear function of the crack length.

• S.D. can therefore be expressed as a function 
of number of intersections:

• Applications to multiple crack shapes
– Ex. Thumbnail cracks intersect twice as many 

grains as similar depth corner cracks.

( )nDCeS Θ=
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Grain Intersection
Relations
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Smooth Surface 
Multi-Site Cracking

• On smooth surfaces the onset of cracking can occur in 
randomly arranged clusters described as micro-multi-site 
cracking.

• Many cracks will arrest (“effectively non-propagating”)

• Propagating (or dominant) cracks are those that 
continue to grow and lead to ultimate failure.

• Dominant cracks are influenced by the shielding effects
of the network of nearby effectively non-propagating 
cracks.



Daniel Guggenheim School of Engineering

Smooth Surface 
Multi-Site Cracking, Cont.

• Causes of Scatter
– Different material forms will have varying grain 

profiles: Ex. Grains in stock rod will be thin and 
elongated while those in plate are characterized by 
three dimensions; longitudinal, transverse and short 
transverse.

– Small cracks fronts will thus encounter differing 
grain intersections and have differing scatter 
properties.

– Randomly arranged crack cluster neighborhoods will 
affect scatter in addition to grain structure.
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Illustrative Crack Shielding
FEM

KI=1.872, 1.455 KI=1.913, 0.7129
*Performed on Franc 2d (Cornell University)



Daniel Guggenheim School of Engineering

Bi-Modal Crack 
Distributions

• Small Crack distributions are bi-modal
– Both “dominant, propagating” and “effectively non-

propagating” cracks have separate distributions.

• Distributions cannot be separated in the early stages of 
loading.
– Measurements are being made after dominant cracks 

can be identified (approx. 10 times the grain size).
– Additional specimens are being run to same number 

of cycles to determine long crack size distribution.
– Subsequent tests are being conducted at 

successively decreasing loading cycles.
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Current Experiments

Aluminum 7075-T7351
• Material Properties:

– Mean σyield= 64.0 ksi
– Mean σUlt= 75.3 ksi

• 1/4 inch plate material with pancake grain structure.
• Mean linear intercept grain dimensions:

– 58.8 microns (Longitudinal)
– 76.1 microns (Transverse)
– 15.0 microns (Short Transverse)
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Current Experiments, Cont.

• Material: Aluminum 7075-T7351

• L = 8 in, H = 2 in
• t = 0.25 in, r = 0.75 in

• SCF = 1.2 (over ligament stress)



Daniel Guggenheim School of Engineering

Current Experiments, Cont.

• Test surface preparation includes entire mid-section of 
specimen.

• All corners are rounded.

• Three abrasive papers
– 240, 320, 600

• Three Diamond Pastes
– 15, 6, 1µ pastes applied with low nap cloth
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Crack Measurement Data

Crack Measurement Data
7075-T7351
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Analysis
• The extrapolated growth rate versus crack length 

equations will be integrated to provide confidence 
intervals for crack length versus load cycles.

• This will give bounds on load cycles as a function of 
crack length.

• These results will then be used, in combination with 
long crack growth data, to estimate the possible 
range of lifetimes.

Using crack length data obtained at N1 and N2 and a 
set of values from tests continued to fracture
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Extrapolation/Analysis
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• Confidence 
intervals 
computed for 
data at each 
cycle count 
using the 
Student-t 
distribution

From the values shown 
as solid points, 
compute the upper and 
lower confidence 
interval values shown 
as open points 
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Extrapolation/Analysis
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Curves from 
initiation to 
the N2 point

• use (upper or 
lower) bound 
values of a at 
N1 and N2 to 
find c1 and c2
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Curves from N=0 to 
N=N2 are of the form:
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Extrapolation/Analysis
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Curves to failure 
confidence bounds

•For a continuation 
of the upper curve 
from N2 to Nf, 
where Nf is a 
confidence limit for 
the smallest set of 
fracture values, use 
the equation shown
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Use the continuity 
conditions at N=N2 to 
find d1 and d2
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Analysis for Lifetime
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• bounds on 
load cycles vs 
crack length 
(confidence 
intervals)

• combine w/ 
long crack 
growth data, 
to provide the 
possible range 
of lifetimes

•Procedure analogous to 
using test results from 
physical examinations on an 
adult population to estimate 
expected lifetime ranges
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Objectives of Continuing 
Research

• Obtain dominant propagating crack distribution 
data for use in interpolating confidence bounds on 
load cycles versus crack length.

• Possible use of effective S.I.F.’s to extend statistical 
results to include stress and crack geometry  effects.

• Determine effects of cluster crack arrangements on 
scatter.
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Additional Test 
Specimens

• Miniature I specimen

– Cracks grown at EDM notches.

– Versatile and modifiable.
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Grain Orientation Study

• Crack growth properties not constant with grain orientation.

• I – Specimen can 
be oriented to any
grain orientation.
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Concluding Comment
• Scatter in Fatigue Crack Growth originates 

within the Small Crack regime. 

• The objective of our research is to use 
small crack growth data to develop 
confidence interval bounds that can be 
used as a basis for providing estimates for 
variations in lifetimes.

• Procedure analogous to using test results 
from physical examinations as a basis for 
estimating variations in expected 
lifetimes.


